
Macroscopic charge quantization in single-electron devices

I. S. Burmistrov1,2 and A. M. M. Pruisken3

1L. D. Landau Institute for Theoretical Physics, Kosygina St. 2, 117940 Moscow, Russia
2Department of Theoretical Physics, Moscow Institute of Physics and Technology, 141700 Moscow, Russia

3Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018XE Amsterdam, The Netherlands
�Received 7 December 2009; published 22 February 2010�

In a recent paper by the authors �I. S. Burmistrov and A. M. M. Pruisken, Phys. Rev. Lett. 101, 056801
�2008�� it was shown that single-electron devices �single-electron transistor or SET� display “macroscopic
charge quantization” which is completely analogous to the quantum Hall effect observed on very different
electron systems. In this investigation we present more detail on these findings. Based on the Ambegaokar-
Eckern-Schön �AES� theory of the Coulomb blockade we introduce a general response theory that probes the
sensitivity of SET to changes in the boundary conditions. This response theory defines a set of physical
observables and we establish the contact with the standard results obtained from ordinary linear-response
theory. The response parameters generally define the renormalization behavior of the SET in the entire regime
from weak coupling with large values of the tunneling conductance all the way down to the strong-coupling
phase where the system displays the Coulomb blockade. We introduce a general criterion for charge quanti-
zation that is analogous to the Thouless criterion for Anderson localization. We present the results of detailed
computations on the weak-coupling side of the theory, i.e., both perturbative and nonperturbative �instantons�.
Based on an effective theory in terms of quantum spins we study the quantum critical behavior of the AES
model on the strong-coupling side. Consequently, a unifying scaling diagram of the SET is obtained. This
diagram displays all the super universal topological features of the � angle concept that previously arose in the
theory of the quantum Hall effect.
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I. INTRODUCTION

A. Coulomb blockade

The Coulomb blockade in nanostructures is one of the
cornerstones of modern condensed-matter physics. The sim-
plest approach to electron tunneling through quantum dots
was proposed by Ambegaokar et al. in 1982.1,2 Their model
�in brief Ambegaokar-Eckern-Schön �AES� model� became
the focus of a stream of experimental and theoretical
papers3–5 following the first experimental indications of
“macroscopic charge quantization” in single-electron devices
in 1991.6

To experimentally control the transport of electrons7 one
generally uses the so-called “single-electron transistor” or
SET.8 This is a mesoscopic metallic island that is capaci-
tively coupled to a gate and connected to two metallic reser-
voirs through tunneling contacts with a total conductance g
�see Fig. 1�a��.

The experimental conditions of the AES model are limited
and extremely well known.5,9–11 The model is nevertheless
richly complex and much of the physical consequences have
remained unknown. Over the years, however, it has slowly
become more evident that the AES theory of the Coulomb
blockade is in many ways similar to the theory of the quan-
tum Hall effect.12 For example, the AES model is asymptoti-
cally free in 0+1 space-time dimension possesses instantons
and has an instanton angle �. This immediately raises the
fundamental question whether the experimental phenomenon
of “macroscopic charge quantization” in the SET is possibly
related to the “robust quantization” of the Hall conductance
observed on very different electronic systems.

The AES model has a number of very significant advan-
tages as compared to the more conventional theories of the �

vacuum or instanton vacuum. For example, the winding
numbers of the theory �“topological charge”� are quantized at
the outset of the problem. This is quite unlike the usual situ-
ation where the historical controversies in quantum field
theory continue to haunt the subject. For example, it has
been pointed out only very recently that the � vacuum con-
cept generally displays “massless chiral edge excitations”
that are very different from those in the “bulk” of the system.
Disentwining these different types of excitation is synony-
mous for separating the fractional topological sectors of the
theory from the integral ones.

Remarkably, it turns out that the existence of “massless
chiral edge excitations” in the problem automatically reveals
the existence of the quantum Hall effect. This fundamental
phenomenon previously remained concealed. However, it
provides the resolution to longstanding problems such as the
quantization of topological charge and the meaning of instan-
tons and instanton gases.

The existence of “massless chiral edge excitations” has
furthermore led to the idea of “super universality” which
states that all the fundamental features of the instanton
vacuum concept are precisely those of the quantum Hall
effect.12 These include not only the robust quantization of the
Hall conductance but also the existence of “gapless excita-
tions” at �=� or, equivalently, “quantum criticality” of the
quantum Hall plateau transition.

It is of interest to know whether these advances possibly
also apply to the AES model. In this case, the microscopic
origins of the integral and fractional topological sectors are
far more obvious. For example, the integral sectors directly
emerge from quantum statistics and they describe the quan-
tum system �SET� in thermal equilibrium. On the other hand,
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the fractional topological sectors do not describe “edge” ex-
citations but, rather, they have the meaning of perturbing
external fields that take the SET out of thermal equilibrium.
The great advantage of the AES model, however, is that the
� dependence can be studied on the strong-coupling side.
The AES model is therefore an outstanding laboratory where
the various different aspects of “super universality” can be
explored and investigated in great detail.

It should be mentioned that the AES model in a different
context is also known as the “circular brane model.”13 It is
furthermore of direct physical interest in the theory of granu-
lar metals at intermediate temperatures.14

B. Charge quantization

The phrase “macroscopic charge quantization” usually re-
fers to the charge of an isolated island that is disconnected
from the reservoirs. It is given by the naive strong-coupling
limit of the AES model where the tunneling conductance g is
put equal to zero.

This naive approach leads to the electrostatic picture of
the Coulomb blockade where the average charge �Q� on the
island is robustly quantized in units of e as the temperature
�T� goes to absolute zero. This quantization breaks down for
very special values of the gate voltage

Vg
�k� = e�k + 1/2�/Cg �1�

where k is an integer and Cg denotes the gate capacitance. At
these very special values of Vg a first-order quantum phase
transition occurs separating two different phases with Q=k
and k+1, respectively.

The electrostatic picture of the Coulomb blockade gets
fundamentally complicated when the tunneling conductance
g is finite. It is well known, for example, that due to the
strong charge fluctuations in the SET the averaged charge Q
on the island is generally unquantized.15 Despite the impres-
sive list of existing theoretical work on both the strong-
coupling side5,16 �g�1� and weak-coupling side14 �g�1� of
the problem, it is not known what the electrostatic or semi-

classical picture of the SET exactly stands for. This funda-
mental drawback clearly upsets the concept of “robust charge
quantization” in single-electron devices.

C. Outline of this investigation

The main objective of this investigation is to show that
the SET displays macroscopic charge quantization in much
the same way as the two-dimensional electron gas displays
the quantum Hall effect. We develop a complete quantum
theory of the SET and introduce a unifying scaling diagram
that spans the entire range from weak to strong coupling.

We benefit from the advances made over the years in the
theory of the quantum Hall effect. We present, in particular,
the “physical observables” of the AES theory that measure
the sensitivity of the SET to changes in the boundary condi-
tions. In the present context this means that the quantum
system is taken out of thermal equilibrium by perturbing
fields. The main problem to be solved is how to lay the
bridge between the sensitivity to the boundary conditions on
the one hand and the standard expressions for linear response
obtained from the Kubo formalism on the other.

1. Electrostatic picture revisited

To start we briefly review the microscopic origins of the
AES model and summarize the results known from previous
work in Sec. II. To see the concept of “physical observables”
at work we consider in Sec. III the trivial case of an isolated
island at finite T obtained by putting the tunneling conduc-
tance g equal to zero. This simple but instructive example
sets the stage for most of the analysis in the remainder of this
paper.

We point out, first of all, that the averaged charge Q on
the isolated island is a measure of the sensitivity of the sys-
tem to changes in the boundary conditions. This notion im-
mediately suggests a generalized Thouless criterion that re-
lates the robust quantization of Q on the island to the
appearance of an energy gap.

Second, we show how the renormalization behavior of Q
at finite T provides a complete knowledge of the low-energy
dynamics of the isolated island. This behavior involves two
different kinds of fixed points, i.e., stable ones at Q=k which
describe the robust quantization of charge as T goes to zero,
and unstable ones at Q=k+1 /2 describing the transition be-
tween the states Q=k and k+1 of the island.

2. Two sets of physical observables

Armed with the insights obtained from the isolated island
we next embark on the general problem with finite g in Sec.
IV. We introduce two slightly different but physically equiva-
lent sets of response parameters g� and q�. The different
expressions that we obtain stem from slightly different ways
of handling the fractional topological sectors of the AES
theory.

The first set is the simpler one which is a direct generali-
zation of the results obtained for an isolated island. The sec-
ond set is slightly more involved, but our findings permit a
direct comparison with the expressions obtained from linear-
response theory.

FIG. 1. �a� Sketch of the SET device. �b� Equivalent circuit of
the SET.
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In both cases, however, one may think of g� and q� in
terms of the sensitivity of the SET to changes in the bound-
ary conditions. In both cases also one may think of g� in
terms of the SET conductance. The quantity q� is new and in
general very different from the conventionally studied aver-
aged charge Q on the island. Within linear-response theory
we express q� in terms of the antisymmetric current-current
correlation function. We identify this new quantity with the
previously unrecognized quasiparticle charge of the SET.

In complete analogy with the theory of the quantum Hall
effect, we relate the conditions for “macroscopic charge
quantization” g�=0 and q�=k with integer k to the appear-
ance of an energy gap in the SET. For g=0 these conditions
are identically the same as those obtained from the electro-
static picture of the SET. For finite g, however, these condi-
tions describe an entirely different physical state of the SET.
They describe the macroscopic quantization of the quasipar-
ticle charge, rather than the averaged charge on the island.

3. Explicit computations

This takes us to the second part of this investigation
where we explicitly compute, in Secs. V and VI, the observ-
able theory g� and q� in the various different regimes in g of
interest. We benefit from having two different definitions of
g� and q�. The different computational schemes provide a
direct check on the universal and nonuniversal parts of the
AES theory.

In Sec. V we consider the weak-coupling phase g→� of
the AES model. We report the detailed results for the
renormalization-group � functions based on ordinary pertur-
bation theory as well as instantons. Even though this Section
is self-contained, we refer the reader to the literature for a
more detailed exposure to the instanton calculational
technique.12

In Sec. VI we address the strong-coupling phase of the
AES theory and study, in particular, the quantum critical be-
havior of the SET at finite g. For this purpose we first map
the critical behavior of the AES model onto an effective
theory of quantum spins. We employ Abrikosov’s pseudo
fermion technique and extract the � functions of the AES
theory near the critical point.

The most important results of this investigation are encap-
sulated in the unifying scaling diagram in the g�-q� plane as
illustrated in Fig. 10. The flow lines clearly indicate that the
phenomenon of “macroscopic charge quantization” is a uni-
versal feature of single-electron devices that always appears
in the limit where T goes to zero. Figure 10 furthermore
displays all the super universal features of the � angle con-
cept that previously arose in the theory of the quantum Hall
effect. We end the paper with a conclusion in Sec. VII.

II. AES MODEL

A. Action

It is well understood by now that the AES model of the
Coulomb blockade is a limiting case of the so-called univer-
sal theory of zero dimensional electron systems.17 To start
we briefly review the microscopic origins of this model. The

experimental design of the SET is illustrated in Fig. 1�a�. The
hamiltonian is split in three distinctly different parts

H = H0 + Hc + �
s=l,r

HT
�s�. �2�

The first part is the free-electron piece

H0 = �
k,s=l,r

�k
�s�ak

�s�†ak
�s� + �

�

��d�
†d�. �3�

The index s runs over of the reservoirs on the left-hand side
�l� and right-hand side �r� of the island respectively. The
subscript k denotes the electronic states in the reservoirs and
� those on the island. The �k

�a� ,�� are the energies relative to
the Fermi level.

The second term in Eq. �2� is the result of the Coulomb
interaction between the electrons on the island

Hc = Ec��
�

d�
†d� − q�2

. �4�

Ec=e2 / �2�Cl+Cr+Cg�� stands for the charging energy and
q=CgVg /e represents the external charge on the island �see
Fig. 1�b��.

The last part of Eq. �2� describes the tunneling of elec-
trons between the reservoir and the island

HT
�s� = �

k�

tk�
�s�ak

�s�†d� + H.c. �5�

The matrix tk�
�s� contains the amplitudes for tunneling between

the reservoirs and the island. To characterize this tunneling it
is convenient to introduce the following Hermitean matrices:

ĝkk�
�s� = 4�2�	��k

�s��	��k�
�s���1/2�

�

tk�
�s�	����t�k�

�s�†, �6�

ǧ���
�s� = 4�2�	����	������

1/2�
k

t�k
�s�†	��k

�s��tk��
�s� . �7�

The first matrix acts in the Hilbert space of states of a single
reservoir and the second one in the Hilbert space of states of
the island. One should think of the delta functions in Eqs. �6�
and �7� as being smoothed out over a scale 	E such that
max�	 ,	�l,r�	�	E�T. Here, 	 and 	�l,r� stand for mean level
spacing of single-particle states on the island and reservoirs,
respectively.

The classical dimensionless conductance �in units e2 /h� of
the junction between a reservoir and the island can be ex-
pressed as follows:5

gs = �
k

ĝkk
�s� 
 �

�

ǧ��
�s� . �8�

Therefore, each nonzero eigenvalue of ĝ�s� or ǧ�s� corre-
sponds to the transmittance of some “transport” channel be-
tween a reservoir and the island.18 The effective number of
these “transport” channels �Nch

�s�� is given by
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Nch
�s� =

��
k

ĝkk
�s��2

�
kk�

ĝkk�
�s� ĝk�k

�s� 

��

�
ǧ��

�s� �2

�
���

ĝ���
�s� ĝ���

�s� . �9�

The effective dimensionless conductance gch
�s� of a ‘transport’

channel can be written as follows:

gch
�s� =

�
kk�

ĝkk�
�s� ĝk�k

�s�

�
k

ĝkk
�s� 


�
���

ĝ���
�s� ĝ���

�s�

�
�

ǧ��
�s� . �10�

The dimensionless conductance gs then becomes

gs = gch
�s�Nch

�s�. �11�

In what follows we will always assume

gch
�l,r� � 1. �12�

Notice that under these circumstances the conductances gl,r
can still be large provided the effective number of channels
Nch

�l,r��1 is sufficiently large.
We furthermore assume that the mean level spacing is

negligible 	�T /max�1,g	,10 and the charging energy is suf-
ficiently large Ec�	 such that the effects of the exchange
interaction can be ignored.5,17

1. Path integral representation

Given this sequence of limitations one can express the
dynamics of the SET in terms of a single abelian phase 
���
with � standing for the imaginary time.1 This field generally
describes the potential fluctuations on the island according to

V���= i
̇���. The quantum-mechanical partition function Z
can be written as a sum over winding numbers W according
to

Z�q� = �
W=−�

�

e2�iqWZW �13�

where ZW is the integral over all paths 
��� that start with

�0� at �=0 and end with 
���=
�0�+2�W at �=� with �
the inverse temperature,

ZW = �

���=
�0�+2�W

D
���e−Sd�
�−Sc�
�. �14�

Here, the action Sd describes the tunneling between the is-
land and the reservoirs

Sd�
� =
g

4
�

0

�

d�1d�2���12�ei
��1�−i
��2� �15�

where g=gl+gr and �12=�1−�2. The kernel ����=���+�� in
time and frequency representation is given by

���� = − T2 cosec2��T�� =
T

�
�
�n

��n�e−i�n� �16�

with �n=2�Tn. The second term Sc corresponds to the
charging energy due to the Coulomb interaction between the
electrons on the island

Sc�
� =
1

4Ec
�

0

�

d�
̇2. �17�

Finally, the exponential factor containing the external charge
q in Eq. �13� describes the coupling between the island and
the gate of the SET.

2. Functional integral representation

An elegant formulation of the AES theory is obtained us-
ing the O�2� field variable

Q��� = �cos 
 sin 


sin 
 − cos 

� �18�

with Q2���=1. The partition function can now be expressed
as follows

Z�q� = �
�V

D�Q�e−S�Q� �19�

where the subscript �V indicates that the functional integral
is performed with periodic boundary conditions

Q�0� = Q��� . �20�

The action is given by

S�Q� = �
0

�

d�1d�2
��12�tr Q��1�Q��2� −
q

2
�

0

�

d� tr �yQ��Q

�21�

with � denoting the Pauli matrices. The kernel 
��12� in
frequency representation can be written as follows:


�i�n� =
g

4�
��n� +

1

8Ec
�n

2. �22�

Alternatively one may express the action in terms of the
O�2� vector field, Q���=�z�nx���+ i�yny����, with n2���=1.
The integer valued topological charge of the system can be
expressed in three different ways

C�Q� = −
i

4�
�

0

�

d� tr �yQ��Q

= −
1

2�
�

0

�

d����n� · ��n�

=
1

2�
�

0

�

d�
̇ . �23�

This quantity is nothing but the number of times �W� the
O�2� vector field n is winding around. It is important to
emphasize that both the periodicity statement of Eq. �20� and
the quantization of topological charge in Eq. �23� are funda-
mental features of the AES theory that inherently describe
the SET in thermal equilibrium. This theory only depends on
the external charge q modulo 2�. If, for example, one splits
q into a fractional piece −����q��� and an integral piece
k�q� �see Fig. 2�
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q =
��q�
2�

+ k�q� �24�

then the quantum-mechanical partition function only de-
pends on the fractional piece ��q�,

Z�q� = Z���q�/2�� . �25�

To extract the integral piece k�q� from the AES theory one
must in general consider perturbing fields that take the SET
out of thermal equilibrium.

B. Instantons

One of the most impressive features of the tunneling term
of Eq. �15� is that it possesses stable classical minima 
W���
for each topological sector W. We term these classical solu-
tions “instantons” since they are completely analogous to
Yang-Mills instantons.19 The general expression for 
W��� is
given by20,21

ei
W��� = 

a=1

�W�
1 − z���za

z��� − za
� . �26�

with

z��� = e−2�iT�. �27�

For instantons �W�0� the complex parameters za are all in-
side the unit circle and for anti-instantons �W�0� they are
outside. The classical action

Sd�
W� =
g

2
�W� �28�

is finite and independent of the complex parameters za which
are the 2�W� zero modes in the problem.

In the limit where g→� one may generally think in terms
of a dilute gas of single instantons and anti-instantons. One
identifies �0=arg z1 /2�T as the position �in time� of the
single instanton whereas �= �1− �z1�2�� is the scale size or

the duration of the potential pulse i
̇�1���. The thermody-
namic potential �inst=−T ln Z of the dilute instanton gas22

can be expressed in a standard manner as an integral over �0
and � according to12,23

��inst = − �
0

�

d�0�
0

� d�

�2 g���De−g���/2+2�T−2/��/Ec��� cos 2�q .

�29�

with D=2e−
−1 and 
�0.577 the Euler constant. Here, the
quantities g��� and Ec��� have the same radiative corrections
as those obtained from ordinary perturbation theory24

g��� = g − 2 ln ��, Ec��� = Ec�1 −
2

g
ln ��� �30�

with �=gEc /�2D standing for the frequency or energy scale.
From Eq. �30� we obtain the renormalization-group equa-
tions which to order g−1 are given by

�g =
dg���
d ln �

= − 2 −
4

g���
, �c =

d ln Ec���
d ln �

= −
2

g���
.

�31�

Here, we have included the perturbative contribution25,26 of
order 1 /g��� into �g. Based on perturbation theory alone one
expects that the quantum system is a good “conductor” at
high temperatures

g�T� = − 2 ln �/� � 1 �32�

and an “insulator” at low temperatures

g�T� = exp�− ��/��z� � 1. �33�

Here, z is a dynamical exponent that is as of yet unknown
and � denotes the dynamically generated correlation length
in the time domain

� = �−1g−1eg/2. �34�

These standard ideas and expectations do not reveal much
about the � angle concept on the strong-coupling side, how-
ever. For example, there are the conflicting claims made by
the semiclassical picture of the Coulomb blockade which say
that the system displays a vanishing energy gap or a “quan-
tum phase transition” when q passes through half-integral
values �see Sec. III B�. These conflicting scenarios raise fun-
damental questions about the exact meaning of the topologi-
cal excitations in the problem and, in particular, the dilute
gas of instantons written in Eq. �29�.

III. PHYSICAL OBSERVABLES

As pointed out many times in our previous work, tradi-
tional instanton results such as Eq. �29� are of limited sig-
nificance since they merely describe the regular or noncriti-
cal pieces of the theory which are of secondary interest. In
order to be able to understand the low energy dynamics of
the SET and, in particular, the phenomenon of charge quan-
tization one must develop an entirely different approach to
the AES model and reconsider the traditional
renormalization-group ideas in quantum field theory all to-
gether.

Recall that conventionally one defines a renormalized
theory by specifying how the ultraviolet singularity structure
of the bare theory can be absorbed in counter terms. There

k�q�

Θ �q�

2 Π

1 2 3 4
q0

1

2

3

4

FIG. 2. Integer k�q� and fractional ��q� pieces of q.
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are many ways of doing this and normally, in the theory of
critical exponent values in � expansions for example, one
chooses a specific scheme based on computational advan-
tages.

The infrared problems associated with the instanton angle
� dramatically alter the physical objectives of the renormal-
ization group. The extensive list of studies on the AES model
is in many ways a reflection of what started many years ago
in quantum field theory. There are the perturbative weak cou-
pling analyzes, the instanton investigations as well as the
various different attempts toward the strong-coupling phase
of the SET. Each of these distinctly different approaches to
the AES model provide different pieces of knowledge in
physics. They are completely disconnected, however, and
have physically very little in common.

The basic idea pursued in the theory of the quantum Hall
effect is to provide a unifying renormalization theory of the
instanton angle � based on the response of the system to
infinitesimal changes in the boundary conditions. This idea is
very close to the criterion of Anderson localization originally
proposed by Thouless.27 It is also very close to ’t Hooft’s
idea on duality based on twisted boundary conditions28

which states that gapless excitations must in general exist
when � passes through odd multiples of �. Unlike these
well-known principles in physics, however, one now relates
the sensitivity to boundary conditions to a set of “physical
observables” that provide a very general definition of the
renormalization behavior of the system. In the context of the
quantum Hall effect these physical observables have previ-
ously been recognized as the macroscopic conductance pa-
rameters of the system.

The AES model is an interesting and highly nontrivial
example where the theory of physical observables can be
explored and investigated in great detail. In this Section we
show that the problem of charge quantization in the SET is
completely analogous to the robust quantization of the Hall
conductance observed in the disordered electron gas in two
dimensions. It turns out that the AES model is extremely
interesting in and of itself because of the long ranged nature
of the tunneling term or the nonlocal properties of the kernel

��12� in Eq. �21�. For the sake of simplicity we assume
throughout the present section that 
��12� is local in time and
postpone the refinements and extensions of the argument to
Sec. IV.

As a trivial but very instructive example of our general
definition of physical observables we study the isolated me-
soscopic island in Sec. III B. This naive strong-coupling ex-
ample reveals much the conceptual structure of the instanton
angle � and sets the stage for the remainder of this investi-
gation.

A. Background fields

Consider a fixed background matrix field U0��� or Q0���
=U0

−1�zU0 that varies slowly in time. We assume that Q0
satisfies the classical equations of motion and carries a small
fractional topological charge, i.e., Q0 violates the boundary
conditions of Eq. �20�. The theory in the presence of the
background field

Z�q;Q0� = �
�V

D�Q�e−S�U0QU0
−1� �35�

then provides all the important information on the quantum
system at low energies. To relate the background field action
the appearance of an energy gap in the SET one must sepa-
rate the constant pieces in Q0 from the parts that couple to
the matrix field variable Q. Employing the split of Eq. �24�
and keeping in mind that C�Q� is quantized then one can
write

exp�2�iqC�U0QU0
−1�	 = exp�2�ik�q�C�Q0�

+ i��q�C�U0QU0
−1�	 . �36�

Using this identity one can split the theory of Eq. �35� into
pieces that are periodic and nonperiodic in the external
charge q according to

Z�q;Q0� = e2�ik�q�C�Q0�Z���q�/2�;Q0� . �37�

It is clear that only the periodic piece probes the sensitivity
of the SET to changes in the boundary conditions. Provided
the 
��12� is local in time one obtains the effective action in
Q0 in terms of a derivative expansion. The result is of the
same form as the AES action itself

Seff�Q0� = 2�ik�q�C�Q0� + S��Q0� �38�

S��Q0� = ln
Z���q�/2�;Q0�

Z���q�/2��

= �
0

�

d�1d�2
���12�tr Q0��1�Q0��2� − i��C�Q0�

+ O�Q0
3� . �39�

except that the bare quantities 
 and ��q� are replaced by the
effective expressions 
� and ��, respectively. As a criterion
for a mass gap or energy gap in the SET one can now state
that S��Q0� must vanish order by order in an expansion in
powers of the derivative acting on Q0. This means that not
only the 
� and �� are exponentially small in � but also the
infinite series of higher order terms not written in Eq. �39�.
Under these circumstances the effective action is given by

Seff�Q0� = 2�ik�q�C�Q0� . �40�

In the context of the disordered electron gas one identifies
this result as the action of “massless chiral edge excitations.”
The quantity k�q� is recognized as the robustly quantized
Hall conductance with sharp steps occurring at the center of
the Landau bands �i.e., q=m+1 /2 with integer m�.

Presently, the background field Q0 merely stands for a
perturbing field that takes the SET out of thermal equilib-
rium. The quantity k�q�, however, is identified as the robustly
quantized quasiparticle charge of SET. This quantity, as we
shall see in Sec. IV, is in general very different from the
averaged charge Q on the island.

B. Isolated island

To see these general statements at work we go back to the
path-integral representation of Sec. II A 1 and consider the
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simple problem with the tunneling conductance g equal to
zero. The classical equation of motion of the Coulomb term
of Eq. �17� is given by �2
 /��2=0 which is simply solved
by writing


��� = 2�T�W + ��� . �41�

The integer W generally stands for the integral topological
sectors of the system and −1 /2���1 /2 denotes the per-
turbing background field with a fractional topological charge.
We can write

Z�q;�� = �
W

exp�2�iq�W + �� −
�2

�Ec
�W + ��2�

= Z�q�e−Seff��� �42�

The “effective action” Seff��� in Eq. �42� has the same gen-
eral form as the original AES theory �in the absence of tun-
neling�

Seff��� = − 2�iq�� −
�2

�Ec�
�2 + O��3� �43�

except that the bare parameters q and Ec are now replaced by
the effective or “observable” ones q� and Ec� respectively. It
is readily seen that

q� = q +
1

2�Ec

� ln Z�q�
�q

, �44�

1

Ec�
=

1

Ec
�1 +

1

2�Ec

�2 ln Z�q�
�q2 � . �45�

Similar expressions can be written down for the coefficients
of the higher order terms in Seff which in general are irrel-
evant.

1. Further evaluation

To investigate the criterion for charge quantization written
in Eq. �40� we must evaluate the observable theory of Eqs.
�44� and �45� in the limit T=0. Making use of the Poisson
summation formula

�
W

e2�ixW =
1

2�
�

n

	�x − n� �46�

one can express the partition function of Eq. �42� as a rapidly
converging sum over quantum numbers n according to

Z�q;�� = �
n

exp�2�in� − �Ec�n − q�2	 . �47�

We immediately recognize the grand partition function for
Eq. �4� with the integer n now standing for the number of
electrons on the island. The effective action can now be writ-
ten as follows:

Seff��� = 2�i�n�� − 2�2��n2� − �n�2��2 + O��3� . �48�

Comparison with Eq. �43� shows that q� is none other than
the averaged charge �n� on the island and Ec� is related to the
variance

q� = �n�,
1

�Ec�
= 8��n2� − �n�2� . �49�

To obtain explicit expressions for q� and Ec� we follow up on
Eq. �37� and split Eq. �47� into periodic and nonperiodic
parts in q according to

Z�q;�� = e2�ik�q��Z���q�/2�;��

Z���q�
2�

;�� = �
n�

exp�2�in�� − �Ec�n� −
��q�
2�

�2� .

�50�

It is immediately clear that Z���q� /2� ;�� in the limit �
→� is independent of �. In complete accordance with the
general statement of Eq. �40� we conclude that the island for
all values of −����q��� develops an energy gap. The
quantity q� or the averaged charge �n� on the island is quan-
tized

q� = �n� = k�q� �51�

with sharp steps occurring at half-integral values of q where
the energy gap vanishes. The thermodynamic potential

���q� = �Ec���q�
2�

�2

�52�

displays a “cusp” at half-integral values of q indicating that
the transition is a first-order one �see Fig. 3�.

2. Renormalization

This takes us to the most important part of this exercise
which is to show that the physical observables generally de-
fine the renormalization behavior of the island at finite T.
Notice that Eq. �50� is dominated by the terms with n�
=0, �1. Write

Z���q�/2�;�� = Z���q�/2��e−Seff
0 ��� �53�

Seff
0 ��� = − i��� −

�2

�Ec�
�2 + O��3� �54�

then the explicit results for the thermodynamic potential
��q� and the physical observables �� and Ec� can be written
as follows:

1 2 3 4
q

1

4��Ec

FIG. 3. The thermodynamic potential � of the isolated island at
finite �dashed curve� and zero �solid curve� temperatures.
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���q� = − ln Z���q�/2��

=
1

4
��Ec��1 − �0�2 − ln�1 + e−��Ec��0� �55�

�� = ��q� −
�

Ec

���q�
�q

= �
2�

e��Ec��0 + 1
�56�

1

�Ec�
=

1

�Ec
�1 −

1

2Ec

�2��q�
�q2 � = � ��

2�
��1 − � ��

2�
�� .

�57�

Here, � denotes the sign of ��q� and �0 is recognized as the
dimensionless energy gap of the island which vanishes near
the critical point according to

�0 = �1 − ���q�
�
�� . �58�

Finally, we express the response quantity �� in differential
form and obtain �see Fig. 4�

������ =
d��

d ln �
=

��

2�
�2� − �����ln� ����

2� − ����� . �59�

This result clearly translates the physics of the isolated island
in the language of the renormalization group. Notice that the
quantity Ec� in Eq. �57� does not lead to more complex renor-
malization behavior since it is expressed in terms of �� alone.
The same is true for the higher terms in Eq. �54�.

We identify two different kinds of strong-coupling fixed
points, a stable one at ��=0 and a critical one at ��= ��:

�1� near the critical fixed point ��= �� we find

������ = � � + �� �60�

which is a standard result for a first-order transition in one
dimension. Equation �60� determines the energy-gap expo-
nent � according to

1

�
= � ���

���
�

��=��

= 1. �61�

Equations �48� and �57� tell us that near criticality the charge
on the island is broadly distributed, i.e., the fluctuations are
of the same order of magnitude as the averaged value ��.

�2� Near the stable fixed point at ��=0 we find

������ = �� ln���� �62�

indicating that the averaged charge q� on the isolated island
is robustly quantized with corrections that are exponentially
small in �; i.e.,

q� = k�q� +
��

2�
= k�q� � e−�Ec�0. �63�

Similarly, the root-mean-square fluctuations in �� as well as
the higher order moments all render exponentially small in
�.

IV. GENERAL RESPONSE THEORY

A. Background fields

Armed with the insights obtained from the isolated island
we next address the AES theory with finite values of g. To
discuss the tunneling term Sd�
� with varying boundary con-
ditions on the 
 field one must generalize the expression for
the kernel ���12� in Eq. �16� which is periodic in time. Write

����12� =
T

�
�

n

e−i��n+2�T���12��n + 2�T�� �64�

with −1 /2���1 /2. The appropriate result for the tunnel-
ing term Sd in Eq. �16� is then obtained if one replaces ���12�
by the following expression:

���12� → ei�2�T���1����12�e−i�2�T���2

= ���12� + 2T2��� − 2iT2� cot��T�12� . �65�

Equation �65� essentially tells us that one cannot insert a
background field Sd�
�→Sd�
+
0� with 
0=2�T� carry-
ing a fractional topological charge unless one changes the
kernel ���12� into ����12�. Given Eq. �65� it is straightfor-
ward to discuss the effect of the more general background
field


0��� = ��m + 2�T��� �66�

and the result can be written as follows:

Sd�
 + 
0� =
g

4
�

0

�

d�1d�2ei
��1�−i
��2�+i
0��1�−i
0��2�����12�

=
g

4�
�

0

�

d�1d�2ei
��1�−i
��2�T�
n

e−i�n�12��n + 
̇0� .

�67�

Notice that Eq. �66� now satisfies the classical equations of
motion of the AES theory as a whole, i.e., not for only the
isolated island as discussed in the previous Section but also
for the theory in the presence of tunneling. We will next
embark on the distinctly different ways of handling the back-
ground field methodology depending on the topological
charge of the field 
0.

1. �0 with fractional topological charge

By taking 
0=2�T�� or �m=0 then Eq. �66� can directly
be used to probe the sensitivity of the SET to changes in the

Π 2 Π
Θ'

�1

1

ΒΘ�Θ'�

FIG. 4. �� function �Eq. �59�� for the isolated island.
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boundary conditions. Introducing the two-point correlation
function

D�i�n� = T�
0

� �
0

�

d�1d�2ei�n�12�e−i
��1�+i
��2�� . �68�

then to lowest orders in the � we obtain the total effective
action

Stot��� = Seff��� +
g

4�
�

n

D�i�n����n + 2�T�� − ��n��

�69�

with Seff��� given by Eq. �48� and below. Keeping in mind
that −1 /2���1 /2 we split the sum in Eq. �69� in n=0 and
n�0 parts and we immediately obtain

Stot��� =
g�

2
��� − 2�iq�� + 	Stot��� �70�

where 	Stot stands for all the higher order terms in �. The
physical observables g� and q� are given as follows:

g� = gTD�i0� , �71�

q� = Q −
g

2�
T�

n�0
Im D�i�n� . �72�

Here we have introduced the quantity

Q = q +
i�
̇�
2Ec

= q −
1

2Ec

���q�
�q

�73�

which generally stands for the averaged charge on the island.
We see that in the presence of tunneling the averaged charge
Q is different from q� which we now identify with the qua-
siparticle charge of the SET. We expect that the new quantity
q� is quantized and, along with that, the quantity g� as well
as all the higher dimensional terms in 	Stot render exponen-
tially small in the limit where � goes to infinity.

2. Higher dimensional terms

To obtain the leading-order corrections in 	Stot one needs
the four-point correlation function

D�i�n,i�m�

= T2�
12
�

34
ei�n�12+i�n�34�e−i
��1�+i
��2�e−i
��3�+i
��4��cum.

�74�

The effective action 	Stot up to the third order in � can be
written as follows:

	Stot��� =
�2

�Ec�
�2 +

2�i

�Fc�
���� + O��3� �75�

where

1

�Ec�
=

1

�Ec

�

�q
�2q� − Q� +

g2T2

8�2 D�i0,i0�

−
g2T2

8�2 �
n,m�0

sgn��n�m�D�i�n,i�m� , �76�

1

�Fc�
=

1

4�Ec

�g�

�q
+

ig2T2

8�
�
n�0

sgn �nD�i�n,i0� . �77�

A more detailed discussion of the higher order terms will be
presented elsewhere.29

3. �0 with integral topological charge

A less obvious way of probing the energy gap in the SET
is obtained by putting �=0 and, instead, we consider back-
ground fields with an integral topological charge only; i.e.,

0=�m�. Notice that this choice of 
0 is a special case of
the instanton solution of Eq. �26� with W=m but with all the
parameters z� put equal to zero. Even though this back-
ground field 
0 can formally be absorbed in a redefinition of
the 
 field one can nevertheless proceed and define the ef-
fective action Stot�
0� by expanding in powers of 
0 or �m.
Provided one finds a way to analytically continue the discrete
Matsubara frequencies to fractional or infinitesimal values
the final results are again a measure for the sensitivity of the
SET to changes in the boundary conditions.

To start we consider the effective action at a tree level

S�
0� =
g

2
�m� − 2�iqm +

�2

�Ec
m2. �78�

We expect that the exact result retains the general form of
Eq. �78� except that the bare parameters g, q and Ec are
replaced by effective or observable ones. To lowest orders in
m one can write

Stot�m� = Seff�m� + K�i�m� − K�i0� �79�

where Seff�m� is the same as Eq. �48� with � replaced by m.
We have introduced the quantity

K�i�n� = −
g

4�
�

0

�

d�1d�2ei�n�12���12��ei
��1�−i
��2�� .

�80�

To expand this theory in terms of a series in powers of �m we
make use of the analytic properties of response functions.
Specifically, following the standard prescription i�m→�
+ i0+ we analytically continue the discrete set of imaginary
frequencies i�m in Eq. �80� to real ones � and subsequently
we can take the limit �→0 �see Sec. IV A�. The following
total result is obtained for the effective action up to order m3:

Stot�m� = −
g�

2
�m� − 2�iq�m +

�2

�Ec�
m2 +

2�i

�Fc�
m�m� . �81�

Here, the quantities q� and g� are given in terms of Kubo-
like expressions as follows:

g� = 4� Im
�KR���

��
�82�
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q� = Q + Re
�KR���

��
. �83�

KR��� denotes the analytic continuation of K�i�m� and the
limit �→0 is understood. As before the Q denotes the aver-
aged charge on the island �see Eq. �73��. Similar results can
be written down for Ec� as well as Fc� but the expressions are
considerably more complex than those of Eqs. �76� and �77�
and the details will be presented elsewhere.

Even though the physical observables of this Section are
formally different from those in the preceding Section they
should nevertheless define the same renormalization behav-
ior of the SET. In particular, in the presence of an energy gap
the physical observables in both Eqs. �70� and �81� should all
scale to zero as � goes to infinity except for the quantity q�
that can take on arbitrary integral values. The main advan-
tage of Eqs. �81�–�83�, however, is that they directly lay the
bridge between the background field methodology on the one
hand, and results obtained from ordinary linear-response
theory on the other �see Sec. IV B�.

B. More about response functions

The function KR��� can elegantly be expressed in terms
of the retarded propagator DR��� which is the analytic con-
tinuation of D�i�n� in Eq. �68�. In Appendix A we derive the
following relation:

KR��� = g�
−�

� d�1d�2

4�3 �2
nb��2� − nb��1�

�1 − �2 + � + i0+Im DR��1�

�84�

where nb���= �exp����−1�−1 denotes the Bose-Einstein dis-
tribution. A detailed computation of KR��� in the weak and
strong-coupling regimes is presented in Appendix D.

Given the function KR��� one can obtain the response
parameters g� and q� from Eqs. �82� and �83�. However, it is
more convenient to express these quantities directly in terms
of DR��� according to

g� = g�
−�

� d�

�
�
�nb

��
Im DR��� , �85�

q� = Q + g�
−�

� d�

4�2

��nb

��
Re DR��� . �86�

C. Linear response

In this Section we establish the contact between the re-
sponse quantities g� and q� and the well-known expressions
for the SET conductance G and the nonsymmetrized current
noise SI.

1. SET conductance

If one applies a voltage difference V=Vr−Vl between the
reservoirs then the tunneling part HT

�l,r� of Eq. �2� becomes
time dependent30

HT
�s� = X�s�e−ieVst + X�s�†eieVst,

Xs = �
k�

tk�
�s�ak

�s�†d�. �87�

The operator for the current Is that flows from a reservoir to
the island can be expressed as follows:

Is = e
d

dt�k

ak
�s�†ak

�s� = − ieX�s�e−ieVst + h . c . �88�

To the lowest order in 1 /Nch
�s� we find

Is = − i�
−�

t

dt���I����t�,HT
�s��t���� = − 2e Im Ks

R�− eVs� .

�89�

The retarded correlation function is given by

Ks
R��� = i�

0

�

dtei�t��X�s��t�,X�s�†�0��� �90�

and the corresponding Matsubara correlation function by

Ks�i�n� = �
0

�

d�ei�n��T�X
�s����X�s�†�0�� . �91�

Repeating the same steps that led to the AES action starting
from the Hamiltonian of Eq. �2� we obtain

Ks�i�n� = −
gs

4�
�

0

�

d�1d�2ei�n�12���12�D��21� . �92�

Comparison with Eq. �80� yields Ks�i�n�= �gs /g�K�i�n� or,
equivalently,

Ks
R��� = �gs/g�KR��� . �93�

Based on the continuity equations for the current I= Il=−Ir
=GV we finally find the SET conductance G in units of
�e2 /h� according to16,31,32

G =
glgr

�gl + gr�2g� �94�

with g� given by Eq. �82� or Eq. �85�. Therefore, except for
the constant glgr / �gl+gr�2 the conductance G is none other
than the observable g� that measures the sensitivity of the
SET to changes in the boundary conditions.

2. Quantum current noise

Similar to Eq. �89� we obtain the real part of the retarded
correlation function as follows:

Re Ks
R�− eV�� =

i

2e2�
−�

t

dt���Is�t�,Is�t���� . �95�

The quantity q� in Eq. �83� or Eq. �86� can therefore be
expressed in terms of the current-current correlation
function33
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q� = Q − i
�gl + gr�2

2glgr

�

�V
�

−�

0

dt��I�0�,I�t��� �96�

in the limit where V goes to zero. We have thus found a
novel interpretation of the so-called antisymmetric current-
current correlation function that in different physical con-
texts has attracted a considerable amount of interest over the
years.34 Introducing the nonsymmetrized current noise35

SI��,V� = �
−�

�

dte−i�t�I�t�I�0�� �97�

then one can also write

q� = Q +
�gl + gr�2

glgr
PV� d�

2�

1

�

�SI��,V�
�V

. �98�

Here, PV denotes the principal value and the limit V→0 is
understood. Equations �94� and �98� are among the most sig-
nificant results of this investigation.

V. WEAK-COUPLING REGIME, g�š1

A. Perturbation theory

At a Gaussian level the AES action in frequency represen-
tation is given by

S0 = g�
n�0

�n +
2�2T

gEc
n2�
n
−n. �99�

To lowest order in an expansion in g the following result for
D�i�n� is obtained

D�i�n� = ��1 −
2

g
�
s�0

1

s + 2�2Ts2/�gEc�
�	n,0 +

2�i

g
�1 − 	n,0�

�� 1

i��n�
−

1

i��n� + igEc/�
� . �100�

Using the representation 	n,0= lim
�→0

��i�n+��−1 one can per-

form analytic continuation to real frequencies and the re-
tarded correlation function becomes

DR��� = ��1 −
2

g
ln

gEce



2�2T
� lim

�→0

�

� + � + i0+

+
2�i

g
� 1

� + i0+ −
1

� + igEc/�
� . �101�

Having carried out integration in Eqs. �85� and �86� with the
help of the identity

�
0

� dx

x2 + �2z2

x2

sinh2 x
=

1

2�z�
− 1 + �z����1 + �z�� , �102�

where ��z� denotes the Euler di-gamma function, we obtain

g��T� = g − 2 ln
gEce


+1

2�2T
, q��T� = q . �103�

Here, 
=−��1��0.577 denotes the Euler constant. The re-
sult for g� was originally obtained in Ref. 24 more than two

decades ago. The quantity q�, on the other hand, is unaf-
fected by the quantum fluctuations to any order in an expan-
sion in powers of 1 /g. To establish the renormalization of q�
�� renormalization� it is necessary to include the nonpertur-
bative effects of instantons.

B. Instantons

Since the infrared of the dilute instanton gas is well de-
fined one can proceed and evaluate the integrals in Eq. �29�.
This leads to the much simpler expression22,26,36

��inst = −
g2

�2�Ece
−g/2 ln

�Ec

2�2e
cos 2�q . �104�

With the help of Eq. �73� we immediately find the tempera-
ture dependence of the average charge on the island and the
result is

Q�T� = q −
g2

�
e−g/2 ln

Ec

2�2e
T
sin 2�q . �105�

To find the quantities q� and g�, however, we still have to
evaluate the instanton contribution to the correlation function
D�i�n�. For this purpose we first consider the expectation of
an arbitrary operator O which can be expanded to lowest
order in the topological sectors W= �1 according to

�O� �
1

Z�q�
�O0 + e2�iqO1 + e−2�iqO−1� �106�

where

OW = �

���=
�0�+2�W

D
���O�
�e−Sd�
�−Sc�
�. �107�

Similarly, we expand the partition function according to

Z�q� � Z0�1 + e2�iqZ1

Z0
+ e−2�iqZ−1

Z0
� �108�

Equation �106� can therefore be split in a W=0 part and an
instanton part

�O� � �O�0 + �O�inst. �109�

Here, �O�0=O0 /Z0 and

�O�inst = e2�iq
O1 − �O�0Z1

Z0
+ e−2�iq

O−1 − �O�0Z−1

Z0
.

�110�

In the semiclassical evaluation of Eq. �110� it suffices to
replace the operator O�
� in the integrand of Eq. �107� by its
classical value O�
W�. The result for Eq. �110� can then be
written in the typical instanton form
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�O�inst = �
W=�1

�
0

�

d�0�
0

� d�

�2 �O�
W� − �O�0�g���D exp

��−
1

2
g��� +

2

�Ec���
�1 −

2�

�
� + 2�iqW�

�111�

where O�
�1� generally depends on the position �0 and
scale size � of the instanton/anti-instanton.

We next apply these general results to the correlation
function D�i�n�. The operator specific parts of Eq. �29� are
computed to be, to the leading order in 1 /g,

�
0

�

d�0�O�
W� − �O�0� = ��− ��

�
�	n,0 + �1 −

�

�
���n�−1�

���

�
�2

��nW�� �112�

with � denoting the Heaviside step function. Inserting this
result in Eq. �29� and performing the integral over � we find
the following result for the instanton part:

Dinst�i�n� = −
g2Ec

�2T2e−g/2�	n,0 cos 2�q − �iTe2�iq sgn n

��1 − 	n,0�� 1

i��n�
−

1

i��n� + 2�iT
�� . �113�

Performing analytic continuation to real frequencies we ob-
tain

Dinst
R ��� = −

g2Ec

�2T2e−g/2�cos 2�q lim
�→0

�

� + � + i0+

− �iTei2�q� 1

� + i0+ −
1

� + i2�T
�� . �114�

Using Eqs. �85� and �86� we find the following nonperturba-
tive corrections to g� and q�:

ginst� = −
g3Ec

6T
e−g/2 cos 2�q , �115�

qinst� = Q�T� −
g3Ec

24�T
e−g/2 sin 2�q . �116�

Here, the expression for Q�T� is given by Eq. �105�.
Combining the perturbative and nonperturbative contribu-

tions of Eqs. �103�, �105�, �115�, and �116� we obtain the
final total result for the temperature dependence of g� and q�,

g��T� = g − 2 ln
gEce


+1

2�2T
−

g3Ec

6T
e−g/2 cos 2�q , �117�

q��T� = q −
g3Ec

24�T
�1 +

24T

gEc
ln

Ec

2�2e
T
�e−g/2 sin 2�q .

�118�

Several remarks are in order. First of all, we notice that the
amplitude of the oscillations in q� with varying q are much

larger than those in the averaged charge Q�T�. Equations
�117� and �118� are generally valid in the weak-coupling
phase of the SET g�1 such that T�g3Ece

−g/2. The results
are completely analogous to the instanton corrections to the
conductances �xx� and �xy� in the theory of the quantum Hall
effect37,38 that have recently been investigated
experimentally.39 It should be mentioned that Eq. �115� co-
incides with the earlier computations reported in Ref. 14.

C. � renormalization

To leading order in 1 /g one can express Eqs. �117� and
�118� in the following manner:

g��T� = g�T� − Dg2�T�e−g�T�/2 cos 2�q , �119�

q��T� = q −
D

4�
g2�T�e−g�T�/2 sin 2�q . �120�

Here, D= ��2 /3�e−
−1�0.68 is a numerical constant and

g�T� = g − 2 ln
gEc

6DT
�121�

contains the perturbative quantum corrections to leading or-
der in 1 /g. It is important to emphasize that same results of
Eqs. �119� and �120� are obtained if one employs the much
simpler expressions for g� and q� defined in Eqs. �71� and
�72�. The only difference is the numerical value of D which
now equals D=2 exp�−
�. At the same time, the charging
energy Ec in Eq. �121� is replaced by �6 /�2�Ec.

Expressing Eqs. �119� and �120� in differential form

�g =
dg�

d ln �
= − 2 −

4

g�
− Dg�2e−g�/2 cos 2�q� �122�

�q =
dq�

d ln �
= −

D

4�
g�2e−g�/2 sin 2�q� �123�

we obtain the renormalization-group functions �g,q
=�g,q�g� ,q�� of the AES theory on the weak-coupling side.
We have included the two loop correction25 in the perturba-
tive part of Eq. �122�.

Equations �122� and �123� are among the most important
results of this investigation. The results clearly demonstrate
that instantons are the fundamental topological objects of the
AES theory that describe the crossover behavior of the SET
between the conducting phase at high temperatures and the
Coulomb blockade phase that generally appears at much
lower temperatures only.

VI. STRONG-COUPLING PROBLEM, g�™1

A. Effective action for �É�

For small values of the tunneling conductance g we can
simplify the Hamiltonian of Eq. �2� near the degeneracy
point �=� or q=1 /2 by employing a projection onto the
states with Q=k�q� and Q=k�q�+1 of the isolated island.15

The projected Hamiltonian can be written as follows:
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H = H0 + Hc + HT
�l� + HT

�r� �124�

where

Hc = Ec�k − q�2 +
�

2
− �Sz, �125�

HT
�s� = �

k�

tk�
�s�ak

�s�†d�S+ + h.c. �126�

Here, �=Ec�1−� /���0, S denotes the spin s=1 /2 opera-
tors and S�=Sx� iSy.

A convenient representation is obtained by using Abriko-

sov’s two-component pseudofermion fields �̄ and �.40,41 Af-
ter integration over the electronic degrees of freedom one
arrives at the following effective action to leading order in
1 /Nch

�s�,

S = �Ec�k − q�2 + �
�

2
+ �

0

�

d��̄��� − � +
�

2
�z��

+
g

4
�

0

�

d�1d�2���12���̄��1��−���1����̄��2��+���2�� .

�127�

Here, � j with j=x ,y ,z stand for the Pauli matrices and ��

= ��x� i�y� /2. We have introduced the chemical potential �
such that the limit �→−� is taken at the end of all calcula-
tions. This procedure ensures that only the physical states
with pseudo fermion number Npf =1 contribute to the quan-
tities of physical interest. Following the prescription40,41

Z = lim
�→−�

�

�e��Zpf �128�

we obtain the physical partition function Z from the pseudo
fermion theory Zpf. Similarly, we extract the physical expec-
tation �O� according to

�O� = lim
�→−�

�Zpf

Z

�

�e�� �O�pf + �O�pf� . �129�

The brackets � . . . �pf denote the average with respect to the
theory of Eq. �127�.

In what follows we employ the effective action of Eq.
�127� to investigate the phenomenon of macroscopic charge
quantization as well as the renormalization behavior of the
SET on the strong-coupling side. Equation �127� is similar to
the XY case of the Bose-Kondo model for spin s=1 /2.43–45

Notice that the spin operators �̄��������� in Eq. �127� are
the same as the AES operators exp��i
���� projected onto
the states Q=k and Q=k+1 of the isolated island. The pro-
jection onto the Hamiltonian of Eq. �124� is justified as long
as g�1, �q−k−1 /2��1 and �Ec�1.42

B. Leading logarithmic approximation

In what follows we limit the analysis of Eq. �127� to the
so-called leading logarithmic approximation. This corre-
sponds to the one-loop renormalization-group procedure of
Refs. 44 and 45.

1. Pseudofermion Green function renormalization

Using Eq. �127� we find the following expression for the
pseudofermion Green’s function for g=0:

G0�
−1 �i�n� = i�n + �  

�

2
, �130�

where �n=�T�2n+1�. The pseudofermion Green’s function
can be expressed in terms of the self-energy !�,

G�
−1�i�n� = i�n + �  

�

2
− !��i�n� . �131�

It is convenient to parameterize the self-energy as follows:

!��i�n� = �i�n + ���1 − 
�i�n��  �1 − 
s�i�n��
�

2
.

�132�

The pseudofermion Green’s function now becomes

G�
−1�i�n� = �i�n + ��
�i�n�  
s�i�n�

�

2
. �133�

The leading logarithmic approximation corresponds to the
simplest diagram for the self-energy shown in Fig. 5. This
leads to the following equation:

!��i�n� = −
gT

4�
�
�l

��l�

i�l + i�n + � �
�

2
− ! �i�l + i�n�

�134�

which has to be solved self consistently. Recall that there is
no renormalization of the interaction line �see Fig. 5� be-
cause of the absence of closed fermion loops in the pseudo-
fermion diagrammatic technique, i.e., their contribution van-
ishes in the limit �→−�.40,41

With logarithmic accuracy we see that both 
 and 
s de-
pend on the single variable x=ln � /max��
s /
 , �i�n+��	
where � is an arbitrary high energy cutoff. Then from Eq.
�134� we obtain


�x� = 1 +
g

4�2�
0

x dy


�y�
, �135�

FIG. 5. The pseudofermion self-energy: solid line denotes
G�i�n� whereas wavy line stands for the interaction ��i�n� �see
text�.
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s�x� = 1 −
g

4�2�
0

x dy
s�y�

2�y�

�136�

and, hence,


�x� = 
s
−1�x� = �1 +

g

2�2x�1/2
. �137�

2. Partition function and the average charge Q

Using Eq. �128� we find

Z = e�Ec�k − q�2
e��/2 lim

�→−�
e−�� �

�n,�=�

ei�n0+
G��i�n� .

�138�

Given the vertex functions 
�x� and 
s�x� it is now trivial to
evaluate the partition function

Z = 2e�Ec�k − q�2
e��/2 cosh

���

2
. �139�

Here,


 = �1 +
g

2�2 ln
�

max���,T	�
1/2

, �140�

and ��=� /
2 stands for the renormalized energy gap be-
tween the ground state and first-excited state.

The average charge on the island is expressed in terms of
the magnetization M = �Sz� of our spin model

Q�T� = k +
1

2
− M �141�

where

M�T� =
1

2
2 tanh
���

2
. �142�

Equation �142� has originally been obtained in Ref. 16 using
slightly different techniques. Evaluating the result at T=0 we
find

Q�T = 0� = k +
1

2
−

1

1 +
g

2�2 ln
�

��

�143�

which is the familiar result of Matveev.15 It does not re-
semble the simple expression for the averaged charge on an
isolated island. This charge is, in fact, no longer quantized
when the tunneling conductance g is finite �see Sec. VI C 1�.

3. Correlation function DR(�)

The diagram for the two-point correlation function D�i�n�
is shown in Fig. 6. Because of the peculiar form of the
pseudofermion interaction which couples the �− and �+ it is
readily seen that the lowest-order contribution to the vertex
function "�i�n� is proportional to g2 ln�� /max�T ,��	� �see
Fig. 7�. Within the leading logarithmic approximation one
can therefore put "�i�n�=1 and, hence,

D�i�n� = −
1

2 cosh ���/2
lim

�→−�

�

�e��

�T�
�m

G−�i�m�G+�i�m + i�n�

= −
tanh ���/2


2

1

i�n − ��
. �144�

After analytic continuation to real frequencies we obtain

DR��� = −
tanh ���/2


2

1

� − �� + i0+ . �145�

C. Physical observables

Given Eq. �145�, it is possible to evaluate integrals in Eqs.
�71� and �72� �definitions I� and in Eqs. �85� and �86� �defi-
nitions II� and compute the response functions in the strong-
coupling phase. For both definitions �I� and �II� we obtain the
same expression for the quasiparticle charge q�,

q� = Q +
1 − 
2

2
2 tanh
���

2
�146�

=k�q� +
1

e��� + 1
. �147�

However, different expressions for the response quantity g�
are obtained and the result is

FIG. 6. The two-point correlation function: solid line denotes
G�i�n� whereas black triangle denotes the vertex function "�i�n�
�see text�.

FIG. 7. The first nontrivial contribution to the vertex function
"�i�n� �see text�.
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gI� =
g

2
2

tanh ���/2
���/2

, �148�

gII� =
g

2
2

���

sinh ���
. �149�

Equation �149� coincides with the result found in Ref. 16
using a somewhat different approach. It furthermore corre-
sponds to the sequential tunneling approximation of Ref. 46.

There are several interesting conclusions that one can
draw from these findings. First of all, we see that as T ap-
proaches absolute zero Eqs. �146�–�149� are independent of
g and precisely coincide with the results obtained for the
isolated island. Unlike Eq. �143�, for example, we find that
the new quantity q� is robustly quantized with infinitely
sharp steps occurring when the external charge q passes
through k+1 /2.

However, Eqs. �148� and �149� for the response quantity
g� do not unequivocally predict an exponential dependence
on T when ����1. Moreover, as shown in Appendix C, the
corrections to the quantities gII� and qI� to second order in g
do not demonstrate an exponential dependence on T when T
vanishes.

This means that the strong-coupling expansion in powers
of g generally does not provide access to the Coulomb block-
ade phase where the SET develops an energy gap. The va-
lidity of the leading logarithmic approximation is therefore
limited to the quantum critical phase ���#1 which for our
purposes is the most significant regime of the SET.

This takes us to the most important part of this exercise
which is to employ Eqs. �146�–�149� in order to extract the
scaling behavior of the SET on the strong-coupling side.
Since our physical observables are essentially defined for
finite-size systems �i.e., finite �� they should in general be
distinguished from the ordinary thermodynamic quantities of
the quantum spin system that are normally being considered.
Emerging from Eqs. �146�–�149� there are two distinctly dif-
ferent renormalization-group schemes, to be discussed fur-
ther below, that provide complementary information on the
quantum system at zero temperature and finite temperatures,
respectively.

1. RG at zero temperature

Equations �146�–�149� clearly show that two renormaliza-
tions are in general necessary to absorb the ultraviolet or
high energy singularity structure of our spin system, i.e., one
renormalization associated with the coupling constant �tun-
neling conductance� g and one associated with the “magnetic
field” �energy gap� �. From the expressions at zero T

g


2 =
g

1 +
g

2�2 ln
�

��

, �� =
�


2 =
�

1 +
g

2�2 ln
�

��

�150�

we obtain the following renormalization-group � and 
 func-
tions to one-loop order

�g =
dg

d ln �
=

g2

2�2 , 
� =
d ln �

d ln �
=

g

2�2 . �151�

Employing the method of characteristics one can cast the
thermodynamic quantities of the quantum spin system at T
=0 in a general scaling form. For example, the magnetization
M with varying “magnetic field” � can be expressed as fol-
lows:

M��� = M0f��M0�� . �152�

Here, the functions M0 and � with varying g are determined
by the � and 
 functions according to

��
�

��
+ �g

�

�g
�� = 0 �153�

�
� + �g
�

�g
�M0 = 0. �154�

One finds, for example, that the characteristic time scale � of
the SET is given by

� = �−1e−2�2/g �155�

which has the same meaning as the weak-coupling expres-
sion of Eq. �34�. The quantity M0 and the scaling function
f�X� within the one-loop approximation are given by

M0 = 1/2g, f�X� = 2�2 ln−1 X−1. �156�

The result essentially tells us that the spontaneous magneti-
zation only exists for the theory with g=0 but it vanishes for
any finite value of g. In terms of the AES model this means
that the averaged charge Q on the island is no longer quan-
tized when finite values of the tunneling conductance are
taken into account.

2. RG at finite temperatures

We next specialize to the physical observables at finite
temperature. Since the expressions of Eqs. �146�–�149� are
universal for ����1

g��T� �
g

2
�1 +

g

2�2 ln ���−1

, �157�

q��T� � k +
1

2
−

��

4
�1 +

g

2�2 ln ���−1

�158�

we immediately obtain the finite temperature � functions
along the critical lines q�=k+1 /2 for g��1 according to

�g =
dg�

d ln �
= −

g�2

�2 �159�

�q =
dq�

d ln �
= �q� − k −

1

2
��1 −

g�

�2� . �160�

These results should be compared with Eq. �59� obtained for
an isolated island. We see that the critical fixed point of an
isolated island is the critical fixed point of the AES theory as
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a whole with the SET conductance g� now playing the role
of a marginally irrelevant scaling variable.

Next we compare Eqs. �159� and �160� with the weak-
coupling results of Eqs. �122� and �123�. In Figs. 8 and 9 we
plot the functions �g and ��q /�q along the critical line q�
=k+1 /2. A simple interpolation between the weak and
strong-coupling branches indicates that both these functions
decrease monotonically as g� increases.

Finally, it is not difficult to understand why the Coulomb
blockade phase of the SET is beyond the scope of the present
investigation. For example, given the fact that the theory
with q��k and g��1 develops an energy gap then one gen-
erally expects �see also Eq. �62��

�g = g� ln g� �161�

�q = �q� − k�ln�q� − k� �162�

which cannot be obtained using ordinary perturbation theory
in g�.

VII. SUMMARY AND CONCLUSIONS

To summarize the results of this investigation we have
sketched, in Fig. 10, a unifying scaling diagram of the SET
in the g�-q� plane. This diagram is based on the strong-
coupling results of Eqs. �59�, �159�, and �160� and the weak-
coupling results of Eqs. �122� and �123�.

The universal features of this diagram are the quantum
critical fixed points located at q�=k+1 /2, g�=0, and the
stable fixed points at q�=k, g�=0 that describe the “macro-
scopic charge quantization” of the SET. The results are in
accordance with the concept of super universality that has
previously been proposed in the context of the quantum Hall
effect.12

We have established the relation between the quantity g�
and the ordinary SET conductance G that one normally ob-
tains from linear-response theory. The quantity q� is new and
can similarly be expressed in terms of the antisymmetric
current-current correlation function.

The quantization of q� is an interesting and important
challenge for experimental research on single-electron de-
vices. There are, however, other ways of experimentally
probing the quasiparticle charge q� of the SET. In Sec. VII A
below we will summarize the quantum critical properties of
q� and point out how they are directly measurable in the
experiment.

We conclude this paper with Sec. VII B below where we
discuss in some detail the physical mechanism that is respon-
sible for changing the quasiparticle charge q� of the SET as q
passes through the critical point.

A. Quantum criticality

Equation �157� is the maximum value of g��T� as one
varies the value of q. This maximum value vanishes logarith-
mically in T according to

gmax� �T� =
g

2
2 =
g

2
�1 +

g

2�2 ln ���−1

= �2 ln−1��/�� � 1.

�163�

Similarly, Eq. �158� determines the maximum slope of the
quasiparticle charge q��T� with varying q. This slope di-
verges according to

k k�1�2 k�1

g’

q’

FIG. 10. Unified scaling diagram of the Coulomb blockade in
terms of the SET conductance g� and the q�. The arrows indicate
the scaling toward T=0 �see text�.

5 10
g'

�2

�1

0
Βg

FIG. 8. The function �g with varying g� along the critical line
q�=k+1 /2. An interpolation between the weak and strong-coupling
branches has been drawn as a guide for the eyes �see text�.

0 5 10
g'0

1

� Βq��q'

FIG. 9. The function ��q /�q� with varying g� along the critical
line q�=k+1 /2. An interpolation between the weak and strong-
coupling branches has been drawn as a guide for the eye �see text�.
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� �q��T�
�q

�
max

=
�Ec

2
�1 +

g

2�2 ln ���−1

=
�2

g
��Ec�ln−1��/�� .

�164�

The inverse of this quantity is a measure for the width �q of
the transition. This width vanishes as T goes to zero.

Notice that Eq. �164� is completely analogous to what
happens at the plateau transitions in the quantum Hall re-
gime. In that case we have

� �RH

�B
�

max
$ �%, �165�

i.e., the maximum slope of the Hall conductance RH with
varying magnetic field B diverges algebraically in �. The
best experimental value of the critical exponent % equals
0.42. Similar to the experiments on the quantum Hall effect,
one may consider higher order derivatives of g� and q� with
respect to q.47 These quantities diverge even faster with
higher powers of �.

The quantity �q� /�q can directly be measured in the ex-
periment since it determines the renormalized gate capaci-
tance of the SET Cg�=Cg�q� /�q. As was shown recently, the
rate of energy dissipation �P� in the SET due to a low-
frequency gate voltage Vg�t�=Vg+U� cos �t is given by48

P $ �2�U��2
Cg�

2

g�
. �166�

Therefore, the maximum in P with varying values of Vg
diverges according to

Pmax $ �Cg�
2

g�
�

max
=

�2Cg
2

g2 ��Ec�2ln−1��/�� . �167�

Finally, it should be mentioned that the critical behavior of
the SET is likely to change when the effective number of
channels Nch

�l,r� between the island and the reservoirs are finite
rather than infinite.14,49 Even though we expect that our
theory of physical observables remains unchanged,
Matveev15 has argued that the critical behavior of the SET
can be mapped onto the N-channel Kondo model.50 This
would mean that the transition at q�=k+1 /2 becomes a
second-order one with a finite critical value of g� thus
closely resembling the more complicated physics of the
quantum Hall effect.12 Progress along these lines will be re-
ported elsewhere.29

B. Quantization of q�

We have seen that the Thouless criterion for the Coulomb
blockade breaks down at points q=k+1 /2 where the energy
gap �� vanishes. To understand how the critical features of
the SET permit a change in q� one must think in terms of a
dynamical process where a unit of external charge is added
to the system at �imaginary� time 0 and removed at ��0.
This process is described by the two-point correlation func-
tion D��� given by

D��� = �ei
�0�−i
���� . �168�

Following Eq. �71�, the tunneling through the SET involves
the sum over all processes D��� according to

g� = gT�
0

�

d�D��� . �169�

From Eq. �144� we obtain the following expression valid at
T=0 when q approaches k+1 /2 from below:

D��� = 
−2����e−���. �170�

This general result includes the isolated island except that the
AES operators are now renormalized �
�1� and the energy
gap � is replaced by the renormalized value ��.

Let us first assume that D��� denotes the correlation of an
isolated island. Equation �169� then stands for a semiclassi-
cal picture of the SET where the island and reservoirs are
essentially disconnected. Since the expectation value ��� is
finite for q�k+1 /2,

��� =
�0

�d��D���
�0

�d�D���
=

1

�
�171�

it is impossible that the tunneling processes described by Eq.
�169� alter the static charge Q on the island. However, as one
approaches the critical point then the expectation ��� di-
verges. It is thus possible that when q passes through k
+1 /2, a unit of charge stays behind on the island. This extra
charge is precisely what lowers the energy of the island; i.e.,
it permits the energy to jump from one parabolic branch
Ec�q−k�2 to the next Ec�q−k−1�2 �see Fig. 3�.

From the expression for q� in Eq. �72� it is clear that this
semiclassical picture of the SET gets dramatically compli-
cated when the tunneling conductance g is finite. In particu-
lar, the second term proportional to g is Eq. �72� clearly
indicates that the quantization of q� goes hand in hand with
strong charge fluctuations between the island and the reser-
voirs. Nevertheless, the mechanism for changing the quasi-
particle charge q� of the SET remains essentially the same.
This mechanism solely involves a vanishing energy gap ��.
The only difference with the semiclassical picture is that the
AES operators e�i
 in Eq. �168� generally stand for the qua-
siparticle operators of the SET, rather than those of ordinary
electrons in an isolated island.

Let us next consider the tunneling process in some more
detail. We are interested, first of all, in the energy difference
	E between the states �q+1� and �q� of the SET. Here, �q
+1� is formally defined as follows:

�q + 1� = lim
�0→�

�q���� �172�

where q���=q+1 for 0����0 and q���=q for �0����.
After elementary algebra we obtain29

	E =
��

1 + e−���
+ T

1


2

d
2

d ln T
. �173�

Since 	E��� at low temperatures �T���� we conclude that
the transition from �q� to �q+1� is energetically unfavorable.
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Next, the rates for electron tunneling from reservoir to
island �"01� and backward �"10� are computed to be46,48

"01/10 =
g��

4�
2�coth
��

2T
� 1� . �174�

As long as the energy gap �� is finite, the energy difference
	E in Eq. �173� and the tunneling rates "01/10 are not related
to one another in any obvious manner. However, at the criti-
cal point �=0 we find

	E =
1

� ln �/�
, "01 = "10 = �	E . �175�

Hence, the energy difference between the states �q+1� and
�q� determines the time the electron resides on the island. It
is therefore possible that the tunneling processes alter the
static charge q� of the SET as q passes through k+1 /2.
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APPENDIX A: ANALYTIC CONTINUATION OF K(i�n)

In this appendix we perform the various steps that take us
from K�i�n�, Eq. �80�, to the expression for KR��� in Eq.
�84�. Starting from the correlation function

K�i�n� = −
g

4�
T�

�m

��m + �n�D�i�m� �A1�

we employ the following relations:

��m� =� d�

�

i�m

� + i�m
, �A2�

D�i�m� =� d�

�

Im DR���
� − i�m

. �A3�

and obtain the following expression:

K�i�n� =
g

4�
� d�1d�2

�2

�2 Im DR��1�
�1 + �2 + i�n

T�
�m

�� 1

�1 − i�m
+

1

�2 + i�m + i�n
� . �A4�

Evaluating the sum over �m we find

K�i�n� =
g

4�
� d�1d�2

�2

�2 Im DR��1�
�1 − �2 + i�n

�nb��2� − nb��1�� .

�A5�

The analytic continuation to real frequencies is now trivial
and we directly obtain Eq. �84�.

APPENDIX B: USEFUL IDENTITIES

The identities obtained in this Section will be of use in
Appendix C. First, we consider the derivative of the average
charge Q with respect to g which can be obtained as follows:

�Q

�g
=

�2 ln Zpf

�g � �
=

1

4�

�

��
T�

�n

��n�D�i�n� . �B1�

With the help of Eq. �A3�, it is convenient to rewrite Eq.
�B1� in the following manner:

�Q

�g
=

�

��
� d�

2�2Y���Im DR��� , �B2�

where

Y��� = T �
�n�0

�n�

�n
2 + �2 . �B3�

A second useful identity for the expression appearing in Eq.
�83� is given by

Re
�KR���

��
= −

g

2�2� d� Im DR���
�Y���

��
�B4�

where the limit �→0 is understood.

APPENDIX C: EVALUATION OF q�
TO SECOND ORDER IN g

Based on Eqs. �B2� and �B4� we evaluate, in this Appen-
dix, the expression for q� in Eq. �83� to second order in g.
We start from the two-point correlation function D�i�n�
which to first order in g is given by

D�i�n� = −
tanh���/2�

i�n − �
�1 −

g

�

�Y���
sinh�����

+
g

�
tanh���/2�

�

��
� Y���

i�n − �
� −

g

4�

��n�
�i�n − ��2 .

�C1�

This result can be written in the following form:

D�i�n� = −
tanh���1�/2�


1
2

1

i�n − �1�
−

g

4�

��n�
�i�n − ��2 .

�C2�

where the renormalized energy gap and the renormalization
factor are given as

�1� = � −
g

�
Y���,

1


1
2 =

��1�

��
. �C3�

Equation �C2� implies the following expression for the re-
tarded function:
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DR��� = −
tanh���1�/2�


1
2

1

� − �1� + i0+ +
g

4�

i�

�� − � + i0+�2 .

�C4�

By inserting result �C4� for DR��� in Eq. �B4� we find after
elementary algebra

Re
�K1

R���
��

= −
g

2�

tanh���1�/2�

1

2

�Y��1�
��1

+
g2

32�2

�

��
��

�

��
� coth

��

2
� �C5�

where the limit �→0 is understood. Next, by expanding Eq.
�C5� to the second order in g we finally obtain

Re
�K1

R���
��

= −
g

2�
tanh

��

2
� �Y

��
−

g

2�

�2Y2

��2

−
g

2�

�

sinh ��

�Y2

��
�

+
g2

32�2

�

��
��

�

��
� coth

��

2
� . �C6�

We proceed by inserting the result for DR��� in the expres-
sion of Eq. �B2� and find

�Q

�g
=

1

2�

�

��
� tanh���1�/2�


1
2 Y��1��� �C7�

−
g

32�2

�2

��2��2 coth
��

2
� . �C8�

Up to second in g the expression for the averaged charge Q
therefore becomes

Q = k�q� +
1

1 + e�� +
g

2�

�

��
�tanh

��

2
�Y −

g

2�

�Y2

��

−
g

2�

�Y2

sinh ��
�� −

g2

64�2

�2

��2��2 coth
��

2
� . �C9�

Finally, collecting Eqs. �C6� and �C9� together we find the
total result for q� as follows:

q� = k�q� +
1

1 + e�� +
g

2�
�Y

�

��
−

g

2�

�Y2

��

�

��

−
g

2�
Y2 �2

��2�tanh
��

2
+

g2

64�2�
�2

��2�� coth
��

2
� .

�C10�

The result can be written in a slightly more compact fashion
according to

q� = k�q� +
1

1 + e��2�
+

g2

64�2�
�2

��2�� coth
��

2
� .

�C11�

Here,

�2� = � − �g/��Y��1�� �C12�

represents the second order in g expression for the renormal-
ized gap.

Similarly, with the help of Eqs. �C1� and �C4� from Eqs.
�82�, �71�, and �72� one can compute the other response pa-
rameters to the second order in g. The results can be sum-
marized as follows:

gI� =
g

2
1
2

tanh ��1�/2
��1�/2

, �C13�

qI� = k�q� +
1

1 + e��2�
−

g2�

64�2

�2

��2�� coth
��

2
�

+
g2

8�3��1� tanh
��1�

2
Im ���1 +

i��

2�
� , �C14�

and

gII� =
g

2
1
2

��1�

sinh ��1�
−

g2

4�2�1 +
�

��

��2

2�
Im ���1 +

i��

2�
�� ,

�C15�

qII� = k�q� +
1

1 + e��2�
+

g2�

64�2

�2

��2�� coth
��

2
� . �C16�

These results are different from those obtained in the leading
logarithmic approximation. In some cases �i.e., gII� and qI��
the corrections in g no longer predict an exponential depen-
dence on T in the limit where T goes to zero. This clearly
shows that the expansion to lowest orders in g does not pro-
vide access to the Coulomb blockade phase of the SET.

APPENDIX D: EVALUATION OF KR(�)

In this appendix we present the results of explicit compu-
tations of the response function KR���. These results can be
used, first of all, as an independent check on the results of
Eqs. �103�, �115�, �116�, �147�, and �149�. Second, they show
how the analytic continuation of K�i�n� to real frequencies
works in explicit computations.

1. Weak-coupling regime g�š1

Based on Eqs. �101� and �113� we obtain the following
expression from Eq. �84�,

KR��� =
i�g

4�
�1 −

2

g
ln

egEc

2�2T
+

2

g
��1 −

i�

2�T
��

− �
n=1

nmax

gEc

2�2

n +
gEc

2�2T

−
g3Ec

2�2 e−g/2

��ei2�q���1� − ��1 −
i�

2�T
�� + cos 2�q �

n=2

nmax 1

n� .

�D1�
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Here, the cut off nmax appears due to the fact that, as usual,
we use the low-frequency part of the kernel ���� only. If one
takes the proper expression for it into account then one finds
nmax�EF /T where EF denotes the Fermi energy.

2. Strong-coupling regime g�™1

Given Eq. �145� we can write

KR��� = −

g tanh
���

2

4�2
2 � d��
nb��� − nb����

� − �� − � − i0+ . �D2�

Hence,

Im KR��� =

g tanh
���

2

4�
2 �� + ����nb���� − nb�� + ����

�D3�

Re KR��� =

g tanh
���

2

4�2
2 ��� + ��Re���1 −
i��� + ��

2�T
�

− ��1 −
i��

2�T
� −

2�

��
Y����� �D4�

By using the following representation of Bose-Einstein func-
tion in the sum over Matsubara frequencies:

nb��� =
1

�
Im ��1 + i

�

2�T
� −

1

2
+

T

�
�D5�

we finally obtain

KR��� =

g tanh
���

2

4�2
2 �� + ������1 − i
� + ��

2�T
�

− ��1 − i
��

2�T
� −

2�

��
Y���� +

iT�

���� + ���
� .

�D6�
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